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Abstract

We estimate the oil price pass-through into consumer prices both in the US and in the
euro area. In particular, we disentangle the specific effect that an oil price change might
have on each disaggregate price, from the effect on all prices that an oil price change might
have since it affects the whole economy. To do so, we first estimate a Dynamic Factor
Model on a panel of disaggregate price indicators, and then we use VAR techniques to es-
timate the pass-through. Our results show that the oil price passes through core inflation
only via its effect on the whole economy. This pass-through is estimated to be small, but
statistically different from zero and long lasting.
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1 Introduction

Quantifying the magnitude and establishing the timing of the pass-through of oil price changes
to consumer prices is crucial for forecasting inflation. Characterizing this pass-through is
particularly important because oil prices tend to undergo wide fluctuations. Consider the
recent plunge of oil prices from July 2014 to February 2016, from about $100 per barrel to
$30. What is the effect of such a large swing in oil prices on core inflation? And how long
will this effect last? In this paper, by using a novel econometric approach, we answer these
questions and we conclude that oil price fluctuations have a limited but long lasting effect
on core inflation. According to our estimates the recent plunge in oil prices shaved-off just a
couple of tenths of a percentage point to core inflation in both the US and the euro area, but
this effect is far from being fully absorbed as it will vanish by 2020.

Oil price fluctuations affect consumer inflation through both its energy component and the
non-energy components. However, while there is clear evidence that the pass-through from
oil prices to energy prices is relatively fast and complete (Burdette and Zyren, 2003; Meyler,
2009), though it is still to be determined whether it is symmetric or not (Venditti, 2013; Atil
et al., 2014; Chesnes, 2016), it is unclear to what degree changes in oil prices pass-through
into non-energy prices (Kilian and Lewis, 2011; Kilian, 2014).

In theory, an increase in oil prices might have an inflationary effect in at least four ways.
First, because energy prices represent a portion (sometimes considerable) of production costs.
Second, because it might lead to higher inflation expectations. Third, because it might lead
workers to demand a higher wage to compensate for the increase in energy prices (Blanchard
and Gali, 2007). And fourth, because it might mimic an adverse supply shock if real wages
do not decrease sufficiently thus triggering an adjustment in employment (Bruno and Sachs,
1985). By contrast, an increase in oil prices might have a deflationary effect in the same fashion
as an adverse demand shock because higher energy prices tend to reduce net-disposable income,
and thus consumption (Edelstein and Kilian, 2009) and investments (Edelstein and Kilian,
2007).

Empirically, despite extensive evidence that changes in the oil prices contribute to macroe-
conomic fluctuations (see Hamilton, 1983, 2003; Hooker, 1996; Barsky and Kilian, 2002; Kilian,
2008, among others), various authors have shown that the pass-through of oil price changes
to core prices has declined since the mid-eighties (see Hooker, 2002; Chen, 2009; Clark and
Terry, 2010, among others) up to the point that it is very limited if not zero (for example
Cavallo, 2008; Clark and Terry, 2010).

In this paper we use a novel methodological approach to estimate the oil price pass-through
into core consumer prices. We first estimate a dynamic factor model on a panel of disaggre-
gate prices, which allows us to disentangle common changes in disaggregate prices due to
macroeconomic fluctuations from idiosyncratic changes due to sector specific characteristics.
We next use VAR techniques to estimate the oil price pass-through via the common compo-
nent, as well as via the idiosyncratic component. Both these pass-through are likely to be
important. Indeed, given that they contribute to macroeconomic fluctuations, changes in the
oil price might pass-through into core inflation via the common/macroeconomic component.
At the same time, given that sectors differ in their use of energy as an input in production or
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in their competitive structure, changes in the oil price might pass-through into core inflation
via some idiosyncratic component.

Our empirical analysis is carried out on a panel of US personal consumption expenditure
(PCE) disaggregate price indexes from 1984 to 2016. We show that common and idiosyn-
cratic dynamics in disaggregate prices have different statistical properties: common dynamics
are slow moving, idiosyncratic dynamics fast moving and volatile. Disentangling these two
components proved crucial when estimating the oil price pass-through into core inflation, as
the estimated pass-through into the idiosyncratic component is not statistically different from
zero, whereas the pass-through via the common component is small, but statistically different
from zero, and long lasting.

The subsample analysis confirms the result in the literature whereby the oil price pass–
through into core inflation has decreased over time. However, in contrast with part of this
literature (for example Clark and Terry, 2010) we always find a positive and statistically signif-
icant pass-through—the reason being that we disentangle between common and idiosyncratic
components, thus not letting the noisy idiosyncratic component affect our estimation results.

Finally, we estimate the oil price pass-through on a panel of euro area harmonized index of
consumer prices (HICP) at a disaggregate level. This estimate yields a euro area pass-through
similar to that of the US.

Other papers have used dynamic factor models to study the effects of oil price fluctuations
on the economy, but none have focused on the pass-through into consumer prices. For example,
Aastveit (2014), Aastveit et al. (2015), Juvenal and Petrella (2015), and Stock and Watson
(2016) study the effects of different structural oil price shocks on the economy, while An et al.
(2014) study whether oil price shocks have asymmetric effects on the economy. Moreover,
other papers have used dynamic factor models to analyze disaggregate prices (Cristadoro
et al., 2005; Altissimo et al., 2009; Boivin et al., 2009; Reis and Watson, 2010, among others),
but none have used these models to study the oil price pass-through. Finally, Gao et al. (2014)
study the effect of oil price shocks on a number of disaggregate US consumer prices using VAR
techniques; they find a significant effect only on the price of energy-intensive goods but do
not distinguish between macroeconomic and idiosyncratic effects.

The rest of the paper proceeds as follows. Section 2 presents the methodology. Section 3
presents the empirical analysis on the US, namely: Section 3.1 describes the data used, and
Section 3.2 discusses common and idiosyncratic dynamics in US PCE prices. Then, Section
3.3 presents estimates of the oil price pass-through, Section 3.4 presents subsample analysis,
and Section 3.5 presents estimates obtained with a more structural model. Finally, Section 4
presents the empirical analysis on the euro area, and Section 5 briefly summarizes the results.

2 The econometric framework

The goal of this paper is to quantify the effect of oil price changes on core, energy, and food
price inflation. More precisely, we aim to disentangle the specific (idiosyncratic) effect that
an oil price change might have on each disaggregate price, from its overall (common) effect
that an oil price change has on all prices. To do so, we first estimate a dynamic factor model
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on a panel of price indicators to separate common from idiosyncratic price changes, and then
use VAR techniques to estimate the pass-through.

Factor models are based on the idea that fluctuations in disaggregate prices are due to a
few common (macroeconomic) shocks (ut) that affect all prices, and to several idiosyncratic
shocks (et), resulting from sector-specific dynamics or from sampling error, which influence one
or a few of them. Accordingly, each price component in the dataset can be decomposed into a
common part χit, which is a linear combination of a small number r of common factors ft that
are driven by the common shocks, and an idiosyncratic part ξit that is driven by idiosyncratic
shocks. Let πit = 1200× log( Pit

Pit−1
) be the annualized month-on-month log-change in the i-th

price component at time t, where i = 1, ...., n and t = 1, ...., T , we then have

πit = λ′ift + ξit (1)

where λi is a r × 1 vector containing the factor loadings of the i-th variable, and χit = λ′ift.
Model (1) is the approximate dynamic factor model proposed by Stock and Watson (2002a,b),
which is a particular case of the generalized dynamic factor model studied by Forni et al.
(2000) and Forni and Lippi (2001).

It is well documented that changes in the oil price contribute to macroeconomic fluctuations
(see Hamilton, 1983, 2003; Hooker, 1996; Barsky and Kilian, 2002; Kilian, 2008, among others),
thus they are likely to have a macroeconomic effect on all prices. To incorporate this feature
in our model, we assume that the common factors and the oil price evolve over time according
to a VAR model. Let yt = ∆ log( oilt

pricet
) be the monthly real oil price growth rate, then we

have

A(L)

(
ft
yt

)
=

(
ut
vt

)
(2)

where vt is “the oil price shock”.1

At the same time, given that sectors are more or less energy intensive so that energy costs
represent a larger or smaller share of total costs, a change in the oil price might have a very
different effect on disaggregate prices depending on how energy intensive is the production
of each single item. This points at the possibility of idiosyncratic effects of oil price changes
on each price component, and therefore we assume that the oil price and each idiosyncratic
component evolve over time according to a bivariate VAR:

Bi(L)

(
ξit
yt

)
=

(
eit
vt

)
(3)

By comparing (2) and (3) we can see that there is a conflict between these two equations in
1Our model is very similar to a standard FAVAR model (Bernanke et al., 2005), which in its turn is a

restricted version of the structural dynamic factor model first introduced by Giannone et al. (2005), Stock and
Watson (2005), and Forni et al. (2009). In a FAVAR model the oil price is treated as an observed factor, which
means that the oil price is part of the common space only, while not having any effects on the idiosyncratic
component. In formulas, equation (1) is replaced by πit = λ′ift + γiyt + ξit, while (2) stays the same and
the idiosyncratic component is not modelled. As a robustness check, in Appendix B we show the estimated
pass-through when a FAVAR model is used.
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that the changes in the oil prices are specified in two different ways, namely:2 yt = a22(L)yt−1+

a21(L)ft−1 + vt from (2), and yt = bi22(L)yt−1 + bi21(L)ξit−1 + vt, for i = 1, . . . , n, from (3).
It is therefore clear that, in order for (2) and (3) to simultaneously hold, restrictions on A(L)

and Bi(L) must be imposed. It turns out that the only possible restriction is to impose that
a21(L) = 0 and bi21(L) = 0,3 so that:

A(L) =

(
I− a11(L) −a12(L)

0 1− a22(L)

)
and Bi(L) =

(
1− bi11(L) −bi12(L)

0 1− bi22(L)

)

with a22(L) = bi22(L), which yields

yt = a22(L)yt−1 + vt. (4)

Equation (4) clarifies two things: first in our framework the oil price is exogenously determined,
that is it is not caused by US or euro area economy. In the literature, oil price shocks are
often identified by assuming that energy prices are predetermined with respect to the US/EA
economy at monthly frequency (for a thorough discussion of this identification strategy see
Kilian and Vega, 2011), which in practice means using a Choleski decomposition with the oil
price ordered first (for example Gao et al., 2014; Stock and Watson, 2016). The restriction in
(4) is in the same spirit, though stronger, as we are imposing that the oil price is exogenous,
rather than predetermined, to US/EA prices.

Second, “the oil price shock” vt is nothing else than a residual from an AR model, and as
such it has no structural interpretation, that is we do not disentangle between oil supply and
oil demand shocks (a non exhaustive list of papers that do so is: Barsky and Kilian, 2002,
2012; Kilian, 2009; Lippi and Nobili, 2012; Baumeister and Peersman, 2013).

Under the assumption that all the components of πt are stationary, the common factors, the
factor loadings, and the idiosyncratic components can be estimated by principal components
(Stock and Watson, 2002a; Bai, 2003).4 Once the factors and the idiosyncratic components
are estimated, the VAR in (2) and the n VARs in (3) can be estimated by OLS simply by
replacing ft and ξit with their principal components estimates, with the estimated parameters
converging at the standard rate min(

√
N,
√
T ) (Forni et al., 2009).

Once A(L) and Bi(L) are estimated, by defining C(L) = A(L)−1 and Di(L) = Bi(L)−1,
2In what follows we use the notation according to which A(L) = I−A1L−A2L

2 − . . .ApL
p = I−A(L),

where A(L) is conveniently partitioned in four polynomials a11(L), a12(L), a21(L), and a22(L) of dimensions
r×r, r×1, 1×r, and 1×1, respectively. The same notation is used for B(L). Furthermore, let C(L) = A(L)−1

be the MA representation of (2), then we use the notation C(L) = I + C1L − C2L
2 + . . .=I + C(L), where

C(L) is conveniently partitioned in four polynomials c11(L), c12(L), c21(L), and c22(L). The same notation is
used for D(L) = B(L)−1.

3While from a theoretical point of view imposing this restriction is necessary, from an empirical point of
view it is nearly irrelevant. Indeed, the estimated pass-through obtained without imposing this restriction is
essentially the same as that reported in Section 3 and 4.

4Estimation of the factors when the data are I(1) is examined by Bai (2004), Bai and Ng (2004), and
Barigozzi et al. (2016). Estimation of impulse response functions for non stationary dynamic factor models is
considered in Barigozzi et al. (2016).
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where

C(L) =

(
I + c11(L) c12(L)

0 1 + c22(L)

)
, and Di(L) =

(
1 + di11(L) di12(L)

0 1 + di22(L)

)
,

and by substituting (2) and (3) in (1) we get

πit = (λic12(L) + di12(L)) vt + λic11(L)ut + (1 + di11(L))eit

= ψχi (L)vt + ψξi (L)vt + φi(L)ut + θi(L)eit (5)

where ψχi (L) and ψξi (L) measure, respectively, the common and the idiosyncratic pass-through
of an unexpected and unpredictable change in the real oil price to the inflation rate of price i.

Having computed the oil price pass-through into each disaggregate price, we can construct
the pass-through into core price inflation as:

ψc(L) =
∑
i∈core

wiψ
χ
i (L) +

∑
i∈core

wiψ
ξ
i (L) = ψχc (L) + ψξc(L)

and likewise for energy price inflation and food price inflation simply by selecting the appro-
priate prices and weights.

3 Oil price pass-through into inflation in the US

3.1 Data

The price data for the US are monthly price indexes for personal consumption expenditures
(PCE) by type of product. The data are taken from the NIPA Table 2.4.4U from the Bureau
of Economic Analysis and downloaded from Haver.

Price data are available at different levels of disaggregation, the finest of which includes
more than 200 price indexes (see Dolmas, 2005, for further details). However, for the purpose
of our analysis 200+ series correspond to an unnecessary high level of detail, and, therefore,
we chose a lower level of aggregation comprising 88 price indexes (the complete list of series is
available in Appendix A). In this dataset 65% of the price indexes have a weight smaller than
1

100 , and just 16% of them have a weight larger than 2
100 .

To estimate the pass-through into the aggregates for core, energy, and food inflation we
compute PCE weights as (see Dolmas, 2005, for details):

wi,t+1 = 0.5
QitPit∑
QitPit

+ 0.5
Qi,t+1Pit∑
Qi,t+1Pit

, (6)

in which data for Qit are taken from the NIPA Table 2.4.6U. In other words, the weights for
the i-th item in, say, June 2016 is equal to an average of the expenditure share of that item
in May 2016 and its expenditure share had it been bought in June 2016 at May 2016 prices.
However, although PCE weights change every month, for the purpose of estimation of the oil
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price pass-through into core, energy, and food price inflation we need just one set of weights,
and we choose to pick the last one available, which are the weights for June 2016.

Finally, the oil price is measured by the West Texas Intermediate (WTI) spot crude oil
price, which is deflated by the core PCE price index.5 The data for WTI are from the
US Energy Information Administration and the Chicago Mercantile Exchange and they were
downloaded from Haver (PZTEXP@USECON), while the core PCE price index is from the
NIPA table (ID 368, Name DPCCRX).

3.2 Common and idiosyncratic dynamics in PCE prices

In this Section we look at common and idiosyncratic dynamics in PCE prices with the ultimate
goal of selecting the number of common factors, r, to be included in our model. The results
are obtained on a sample starting in 1984:M1 and ending in 2016:M6 (see Section 3.3 for a
discussion on the choice of the sample).

Table 1 shows the percentage of overall variance explained by the first ten factors. The
first factor explains a good chunk (8%) of the total variability in the dataset, while the other
factors explain just a residual fraction of it. Thus, the numbers in Table 1 provide strong
evidence pointing towards the existence of one common factor, but it is unclear if additional
factors are needed.

Table 1: Common dynamics in PCE prices

r 1 2 3 4 5 6 7 8 9 10
µt 7.9 4.3 3.2 3.0 2.7 2.5 2.4 2.2 2.1 2.0

Notes: µt is the percentages of total variance explained by the first r factors.

Figure 1 shows the percentage of variance of each variable explained by the first four
factors, where we have divided the disaggregate prices into four plots each of which represents
a different category. If we look at food and energy, which we expect to be driven to a great
extent by sectoral factors, such as weather in the case of food and various supply shocks in the
case of energy, we see that the second and the fourth factor have good explanatory power thus
suggesting that they capture mainly idiosyncratic food/energy related fluctuations. If we look
at “Core Goods” prices“, Core Services I” prices, and “Core Services II” (market-based) prices,
the second, the third, and the fourth factor have a very low explanatory power suggesting that
one factor suffices for these categories.

The results in Table 1 and Figure 1 point out that, independently of the number of factors
included in the model, idiosyncratic dynamics are the main driver of changes in disaggre-
gate PCE prices (see also Boivin et al., 2009; Reis and Watson, 2010). However, although
idiosyncratic dynamics dominate disaggregated prices’ fluctuation, they do not dominate the
evolution of the aggregate core index. Indeed, in a model with one common factor, the common

5Blanchard and Gali (2007) argue that some of the oil price changes are extremely large and thus might
bias the estimation of the oil price equation. We checked this issue by running on the real oil price growth
rate the same procedure to remove outliers that we run on disaggregate prices (see Appendix A for details),
and we found just one outlier in 1974:M1. Removing that outlier does not change any of the results shown in
the paper.
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Figure 1: Common dynamics in PCE prices
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Notes: This figure shows the percentage of variance (y-axis) of each variable (x-axis) explained by the first
four factors. Each bar represent a different disaggregate price. Core Services I includes: “Housing and utilities”,
“Health care”, “Transportation services”, “Recreation services”, “Food services and accommodations”. Core Services
II includes: “Financial services and insurance”, “Other services”, and “Final consumption expenditures of NPISHs”.

component accounts for 57% of core PCE fluctuation. Furthermore, the stochastic proper-
ties of the common and idiosyncratic components are different: the former are very persistent,
while the latter tend to have very short memory (see Table 2). Note that these last two results
are in line with the theoretical results in Zaffaroni (2004). Zaffaroni (2004) shows that, as the
number of variables gets large, the aggregation of univariate heterogeneous ARMA processes
driven by a common and an idiosyncratic shock yields a time series that (1) is more persistent
than the disaggregate series, and (2) is mainly driven by the common shock; by contrast the
disaggregated series are mainly driven by the idiosyncratic shocks (see also Granger, 1980).
For empirical results similar to ours, see Clark (2006) and Maćkowiak et al. (2009) for the
U.S., and Altissimo et al. (2009) and Beck et al. (2016) for the euro area.

In summary, there is strong evidence indicating that PCE prices admit a factor represen-
tation, but there is high uncertainty on the number of factors to be included in the model.
Furthermore, this uncertainty is not resolved even by resorting to more formal criteria, such
as, for example, the Bai and Ng (2002) information criteria that support the choice of up to
three common factors.

8



Table 2: Persistence of common and idiosyncratic dynamics

ρ1 ρ6 ρ12

ρξj(50) 0.12 0.07 0.06
ρξj(75) 0.22 0.12 0.12
ρξj(90) 0.38 0.21 0.21
ρfj 0.79 0.75 0.70

Notes: This table shows the persistence of the idiosyncratic components and the common
factor. In detail, ρξj (α) is the α percentile of the distribution of the estimated autocor-

relation coefficient at lag j of the idiosyncratic component, while ρfj is the estimated
autocorrelation coefficient at lag j for the common factor.

3.3 Oil price pass-through

This Section presents estimates of the oil price pass-through into core PCE price inflation,
food PCE price inflation, and energy PCE price inflation. Results for each of the 88 PCE
price indexes in our dataset are available in an online appendix.

Our benchmark specification includes one factor (r = 1), and six lags for the VARs (2) and
(3). As discussed in Section 3.2 there is considerable uncertainty surrounding the appropriate
number of factors. We took a conservative approach under the rationale that the existence
of one factor is almost sure, while the presence of additional factors is not so sure (results
with r = 3 are available in Appendix B). The choice of six lags, despite being larger than
what selected by standard information criteria, is in line with the existing literature (see for
example Edelstein and Kilian, 2009; Gao et al., 2014).

The model is estimated on a sample starting in 1984:M1 and ending in 2016:M6, which
contrasts with a large part of the literature on oil price shocks that uses samples starting in
1973/1974 (for example Kilian, 2009; Aastveit, 2014; Gao et al., 2014). There are at least two
good reasons to consider a sample starting in 1984 rather than 1974. First, it is well known
that during the 1970s and the early 1980s inflation was much more volatile than afterwards.
Second, inflation in the 70s was heavily influenced by a number of food price shocks, and
by the 1971-1974 wage and price controls (see Blinder and Rudd, 2013). These “structural
breaks” are capable of distorting our estimates, and actually several authors (for example
Hooker, 2002; Clark and Terry, 2010) found a structural break in the oil–inflation relation.
For these reasons our sample starts in 1984, the year considered by the literature as the start
of the “great moderation”.

Figure 2 shows the impulse response function to an oil price shock of the percentage
change of the real oil price, together with a bootstrapped 90% confidence interval. After
an unexpected 10% increase, the real oil price increases further in the next two months by
approximately 3% and 1

2%, respectively.
The upper plots in Figure 3 show the estimated oil price pass-through into the common

component of energy, core, and food PCE price inflation, while the lower plots show the
pass-through into the idiosyncratic component.

As expected, the oil price passes through energy PCE price inflation almost entirely via
the idiosyncratic component (left column). We estimate that an unexpected 10% increase in
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Figure 2: Impulse response function to an oil price shock
Percentage change of the real oil price
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Notes: This figure shows the impulse response function to an oil price
shock of the percentage change of the real (WTI) oil price (straight line
with markers) with 90% confidence bands (shaded area). The x-axis
represents months, while the y-axis represents percentage points.

the real oil price increases energy prices of approximately 11% in the current month, 19% after
one month, 5% after two months, and 4% after three months. The pass-through is completed
in three months.

The middle column in Figure 3 shows the estimated oil-price pass-through into core PCE
price inflation. The pass-through of an unexpected 10% increase in the real oil price into
the idiosyncratic component of core prices is not significantly different from zero (lower plot),
while the pass-through into the common component, despite being small, is very persistent: an
unexpected 10% increase in the real oil price is estimated to increase core PCE price inflation
for more than 4 years (not shown here). Although the pass-through into the idiosyncratic
component is not statistically significant, for some of the components of core PCE—the more
energy intensive ones—we estimate a positive and significant pass-through. However, these
components account for a very small share of core PCE and therefore the aggregate effect turns
out to be not statistically significant. This is the case, for example, of “Air transportation”
that has a weight of 0.5

100 in core PCE, and for which we estimate an increase of roughly four
percent in the current month.

The right column of Figure 3 shows the estimated oil price pass-through into food PCE
price inflation. In line with at least one previous study, the estimated pass-through into the
idiosyncratic component is not statistically different from zero (c.f. Baumeister and Kilian,
2014), while the pass-through via the common component is very similar to that for core PCE
price inflation.

Finally, having estimated the pass-through from oil prices to PCE price inflation, we can
calculate what the oil price contribution to core PCE price inflation was. Figure 4 shows the
average contribution per year of changes in the oil price to core inflation up to 2020. We
estimate that the plunge in the WTI spot prices from roughly $100 per barrel to roughly
$30 per barrel that occurred between July 2014 to February 2016 shaved-off a quarter of a
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Figure 3: Oil price pass-through into US PCE price inflation:
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common
component, while the lower plots show the pass-through into the idiosyncratic component. On each plot the black
line is the point estimate, while the shaded area is the 90% confidence band. The x-axis represents months, while
the y-axis represents percentage points.

percentage point from core PCE price inflation in 2015, and a third of a percentage point in
2016. We estimate that the drag from oil prices will persist in 2017 and 2018 (about two tenth
each year), and that it will then disappear by 2020.

Figure 4: Oil price contribution to US core PCE price inflation
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Notes: This plot shows the average contribution per year of real oil price
changes to US core PCE price inflation measured in percentage points
(y-axis). The black line with markers is the point estimate while the
shaded area is the 90% confidence band.

3.4 Has the oil price pass-through into core inflation changed over time?

There is extensive evidence that the oil price pass-through to core inflation has decreased
over time (see Hooker, 2002; Chen, 2009, among others), with some authors finding that the
pass-through has become negligible (Clark and Terry, 2010). Figure 5 shows the estimated
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pass-through into core PCE prices via the common component when the model is estimated
on a longer sample starting in 1974 (left plot), and when the model is estimated on a shorter
sample starting in 1996 (right plot). The choice of 1996 is for comparison with the euro area
analysis performed in Section 4, while 1974 is the starting date of a large number of empirical
analysis (for example Aastveit, 2014; Gao et al., 2014).

The results in Figure 5 confirm that the oil price pass–through into core inflation has
decreased over time. In contrast with part of the literature (for example Clark and Terry,
2010) we still find a statistically significant pass-through even on the sample starting in 1996—
the reason being that we disentangle between common and idiosyncratic movement in price
fluctuations, thus not letting the noisy idiosyncratic component affect our estimation (see also
the discussion in Section 3.5).

The literature has also asked why the pass-through has declined over time pointing to
several (non mutually exclusive) explanations. For example, a possible explanation is that
part of the decline in the pass-through can be attributed to the adoption of energy-saving
technologies (Hooker, 2002; Bachmeier and Cha, 2011), while another explanation (Nordhaus,
2007; Bachmeier and Cha, 2011) points towards a change in the monetary policy response to
oil price shocks (see Blinder and Rudd, 2013, for a review). While investigating properly
the economic reasons of the decline in the pass-through into core inflation would require a
structural model, here we provide some reduced form evidence.

Figure 5: Has the oil price pass-through changed over time?
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Notes: In each plot the gray line is the estimated pass-through in the benchmark model (the shaded area is the 90%
confidence band), while the thick black line is the pass-through estimated on the sample starting in 1974 (left plot) or
1996 (right plot). The thin black lines are the 90 percent confidence bands for these alternative time periods. The x-axis
represents months, while the y-axis represents percentage points.

Why does the oil price pass-through change when our model is estimated on different
samples? To answer it is necessary first to notice that an alternative (and equivalent) way to
estimate the oil price pass-through onto the common component of core inflation is to fit a
bivariate VAR on the changes in the real oil price (yt) and the common component of core
inflation (χct).6 Second, it is important to keep in mind that when we estimate the model in two
different samples, we re-estimate the common factor and the factor loadings, and therefore

6Let πct be the monthly core prices inflation rate, then by using (1) and the aggregation weights we can
write πct = χct + ξct , where χct =

∑
i∈core wiλift, and ξ

c
t =

∑
i∈core ξit.
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χct . Indeed, had we not re-estimated χct , then the difference in the estimated pass-through
would have been attributable to the mechanical fact that the coefficients of the VAR vary
because they are estimated on two different samples. However, given that we re-estimate χct ,
the estimated coefficients of the VAR vary also because the estimated common component
changes depending on the estimation sample. To disentangle between the contribution of
common component estimation and contribution of the different VAR estimation, in Figure
6 we show the pass-through obtained when the VAR is estimated on the 1996-2016 sample
while the common component is estimated on different periods.

Figure 6: Why has the oil price pass-through changed over time?
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Notes: In each plot the black line is the estimated oil price pass-through into the common component of core
inflation estimated on the 1974-2016 sample (left plot), and in the 1984-2016 benchmark sample (right plot). The
dotted black line in the left (right) plot is the pass-through estimated when χct is estimated over the 1974-2016
(1984-2016) sample, but the VAR is estimated on the 1996-2016 sample. Finally, in both plots the gray line is
the pass-through estimated on the 1996-2016 sample. The x-axis represents months, while the y-axis represents
percentage points.

By looking at Figure 6 we can see that the magnitude of the estimated pass-through
varies between samples mainly because of the common component estimation, whereas the
persistence of the estimated pass-through varies between samples mainly because of the period
used to estimate the VAR. The question then is why the common component estimated on
different samples is different.

The answer is straightforward: the estimation of the common component depends on the
comovement in the data, and the comovement in US disaggregate prices has changed over time.
Indeed, the average percentage of disaggregate prices fluctuation explained by the common
component has decreased from 18% in the 1974-2016 sample, to 8% in the 1984-2016 sample,
to 6% in the 1996-2016 sample—at the aggregate level, the common component accounts for
90%, 57%, and 11% of core PCE fluctuations in the three samples, respectively.

In conclusion, our reduced form analysis points out that one of the reasons why the oil
price pass-through onto core inflation has decreased over time is the fact that disaggregate
prices have increasingly been driven by idiosyncratic dynamics.

3.5 Is our model miss-specified?

Our model assumes that the common component is driven by two shocks: a common shock,
which has no structural interpretation, and an oil price shock. This is clearly a simplifying
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assumption as the common component might reflect the interplay of several different sources
such as, for example, the Federal Reserve leaning against the inflationary pressure triggered
by an oil price shock (Bernanke et al., 1997; Kilian and Lewis, 2011). Does this simplifying
assumption bias our results? Are we making a mistake in not disentangling these different
sources? This Section answers these questions.

In order to account for the interplay of different macroeconomic forces, we estimate a
larger VAR model. In detail, we first estimate equation (1), and then, rather than estimating
the VAR (2), we estimate a four–variable VAR including the percentage change in the real oil
price (yt), the unemployment rate, the Fed funds rate, and the common factor (ft).7

The left plot in Figure 7 compares the oil price pass-through into core inflation estimated
with the larger VAR (black line) to that estimated with the benchmark model (gray line).8

Results are essentially unchanged: the estimated pass-through with the enlarged VAR is just
a touch smaller than the one estimated with the benchmark model, which is reflected in a
smaller estimated oil price contribution to core inflation (right plot). In other words, the main
conclusion of the paper is confirmed—the oil price pass-through to core inflation is small but
statistically significant and long lasting.

The results in Figure 7 contrast with those in Clark and Terry (2010). Clark and Terry
(2010), who estimate a time varying parameter VAR including core price inflation (πct ), energy
price inflation, the unemployment rate, and the Fed funds rate, conclude that starting from
1985 the pass-through from energy price inflation to core price inflation is essentially zero. It
can be shown that our model is very similar to that of Clark and Terry (2010) as it can be
rewritten as a four–variable VAR including the percentage change in the real oil price, the
unemployment rate, the Fed funds rate, and the common component of core price inflation
(χct). Therefore, our conclusions are different from Clark and Terry (2010) because we include
χct in lieu of πct in the VAR model, that is we back-out the more noisy idiosyncratic compo-
nent thus not letting it affect our estimation. This result further confirms the importance of
disentangling between common and idiosyncratic movement in price fluctuations.

4 Oil price pass-through into inflation in the euro area

4.1 Data

The price data for the euro area are monthly Harmonized Indexes of Consumer Prices (HICP)
(see Appendix A for details), while the weights are the official HICP item weights referred to
2016.9 Both the disaggregate prices and the weights are available from Eurostat starting in
1996, and therefore the results for the euro area are obtained on a sample starting in 1996:M1,

7The unemployment rate is the “Civilian Unemployment Rate: 16 yr +” from the Bureau of Labor Statistics,
while the Fed Funds Rate is from the Federal Reserve Board. Both series where downloaded from Haver
(LR@USECON, and FFED@USECON).

8When we estimate the larger VAR we do not impose the restriction in (4). Furthermore, the oil price
shock is identified using a standard Choleski decomposition with the oil price ordered first.

9Weights of the Classification of Individual Consumption by Purpose (COICOP) categories are revised
yearly and released in February together with the data for the month of January. In other words, while PCE
weights change every month, HICP weights are constant within a given year.
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Figure 7: Is our model miss-specified?
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Notes: The left plot shows the pass-through of an unexpected 10% increase of the real oil price into the common
component of core PCE prices. The gray line is the estimated pass-through in the benchmark model (the shaded
area is the 90% confidence band), while the thick black line is the pass-through estimated using the enlarged VAR
model (the thin black lines are the 90% confidence bands). The x-axis represents months, while the y-axis represents
percentage points. The right plot shows the average contribution per year of real oil price to US core PCE price
inflation measured in percentage points (y-axis). The gray line is the estimated contribution in the benchmark
model (the shaded is the 90% confidence band), while the black line is the point estimate estimated using the
enlarged VAR model (the thin black lines are the 90% confidence bands).

and ending in 2016:M6. Furthermore, given that Eurostat publishes seasonal adjusted series
only for the aggregate indexes, we seasonally adjusted the disaggregated price series ourselves
using X12 ARIMA.

HICP price indexes are available at 5-digit level Classification of Individual Consumption
by Purpose (COICOP) for a total of 303 disaggregate prices, but for our analysis we consider
disaggregated series at 3-digit level, which gives us a dataset of 95 series. From this 95 price
dataset we remove the following components that are available only starting from January
2000: “Dental services”, “Hospital services”, “Social protection”, “Other insurance”, “Insurance
connected with health”, and “Medical and paramedical services”. The final dataset is composed
of 87 price series covering 96.1% of the HICP index with 69% of the price indexes that have
a weight smaller than 1

100 , and 14% of them that have a weight larger than 2
100 .

Finally, the oil price is measured by the Brent spot crude oil price, which is deflated by
the HICP core price index. The data for the Brent price are taken from the US Energy
Information Administration and the Wall Street Journal, and were downloaded from Haver
(PEBRT@USECON), while the data for core HICP are taken from Eurostat (teicp200).

4.2 Common and idiosyncratic dynamics in HICP prices

Table 3 shows the percentage of variance explained by the first r factors. Similar to US PCE
prices, EA HICP prices clearly admit a factor structure, but again it is unclear if more than
one factor is needed. Moreover, the first factor accounts on average for roughly the same share
of variance of disaggregate prices as in the US (see second and the third row of Table 3).10

Figure 8 shows the percentage of variance of each variable explained by the first four
10Note also that in a model with one common factor, the common component accounts for 21% of core EA

HICP inflation fluctuations. This is comparable to the shares estimated for US PCE prices on the 1996-2016
sample, which is 10%.
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Table 3: Common dynamics in EA HICP prices

r 1 2 3 4 5 6 7 8 9 10
µEAt 9.8 4.2 3.9 3.6 3.0 2.9 2.6 2.5 2.3 2.3
µUSt 5.7 4.9 4.0 3.1 3.0 2.8 2.6 2.4 2.3 2.2

Notes: µEA
r is the percentages of total variance explained by the first r factors in the

EA, while µUS
r is the percentages of total variance explained by the first r factors in the

US. Both µEA
r and µUS

r were computed on a sample starting in 1996:M1 and ending in
2016:M6.

factors, where we have divided the disaggregate prices into three plots each of which represents
a different category. Although Figure 8 does not help in understanding how many factors to
include in the model, it clearly shows that EA core services prices are more idiosyncratic than
core goods. The uncertainty on the number of factors is not resolved by the Bai and Ng (2002)
criteria that supports up to eight factors.

Figure 8: Common dynamics in EA HICP prices
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Notes: This figure shows the percentage of variance (y-axis) of each variable (x-axis) explained by the first four
factors. Each bar represent a different disaggregate price.

4.3 Oil price pass-through

In this Section we present estimates of the oil price pass-through into core EA HICP inflation,
food EA HICP inflation, and energy EA HICP inflation. The benchmark specification is
identical to the one used for US PCE prices, that is one factor (r = 1) and six lags in the
VARs (2) and (3).

Figure 9 reports the estimated oil price pass-through into energy HICP inflation (left col-
umn), core HICP inflation (middle column), and food HICP inflation (right column), together
with 90% bootstrap confidence bands.

An unexpected 10% increase in the real oil price increases energy prices of roughly 9% in
the current month, of 8% after one month, of 11⁄2 percent after two months, and of 21⁄2 percent
after three months. The pass-through is completed after three months. These numbers are
considerably lower than those estimated for the US, most likely due to higher fuel taxes in the
euro area. More precisely, in the euro area taxes on average account for roughly 60% of total
gasoline prices, with crude oil prices accounting for roughly 20% (see European Central Bank,
2011, page 87), while in the US the same shares are, respectively, 21% and 49% (source: EIA
website http://www.eia.gov/petroleum/gasdiesel/).

The estimated pass-through into core HICP inflation in the EA is similar to that estimated
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for the US (middle column of Figure 9). The pass-through via the idiosyncratic component
is not statistically different from zero, while the pass-through via the common component is
null in the current month, but then small and persistent.

Figure 9: Oil price pass-through into EA HICP inflation
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common
component, while the lower plots show the pass-through into the idiosyncratic component. On each plot the thick black
line is the point estimate for the EA, while the thin black lines are the 90% confidence bands. Likewise, the solid gray
line and the shaded area are the point estimate and the confidence bands for the US, respectively. The x-axis represents
months after the oil price increase, while the y-axis represents percentage points.

Figure 10 shows the oil price contribution to core EA HICP inflation up to 2020. We
estimate that the plunge in the oil price shaved-off approximately 17 basis points to core
inflation in the euro area in 2015, and 19 basis points in 2016. The drag from oil prices will
persist in 2017 and 2018 (8 and 5 basis points), but it will fade away by 2019.11 These numbers
are very similar to those estimated for the US, with the effect being just slightly delayed.

5 Conclusions

In this paper we estimate the oil price pass-through into consumer prices both in the US and
in the Euro area. To do so, we use a novel econometric approach based on dynamic factor
models and VARs, which allow us to distinguish between the specific (idiosyncratic) effect that
oil price changes might have on each disaggregate price, from the macroeconomic (common)
effect that oil price changes might have since they contribute to macroeconomic fluctuations.

Our results show that common and idiosyncratic dynamics in disaggregate prices have
different statistical properties: common dynamics are slow moving, idiosyncratic dynamics
fast moving and volatile. Disentangling these two components proved crucial when estimating
the oil price pass-through into core inflation, as we estimate that there is essentially no oil
price pass-through into core inflation via the idiosyncratic component, while the pass-through
via the common component is small, but statistically different from zero and long lasting.

11In a recent paper Conti et al. (2017) estimate that oil prices shaved off an average of (roughly) 13 basis
points to EA core inflation. Such an estimate is lower but not statistically different than ours.
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Figure 10: Oil price contribution to EA core HICP inflation
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Notes: This plot shows the average contribution per year of real oil price to EA core HICP inflation measured
in percentage points (y-axis). The thick black line is the point estimate for the EA while the thin black lines
area are the 90% confidence bands). Likewise, the solid gray line and the shaded area are the point estimate
and the confidence bands for the US, respectively.

This result is robust to estimation on different samples and to estimation with different model
specifications.
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Appendix A Data

Appendix A.1 The US dataset

The price data for the US are monthly price indexes for personal consumption expenditures
(PCE) by type of product. The data are taken from the NIPA Table 2.4.4U from the Bureau
of Economic Analysis and downloaded from Haver. The data were seasonally adjusted by the
Bureau of Economic Analysis, and large outliers—πit is considered an outlier if its absolute
value is larger than 10 times the interquantile range—were replaced by centered 9-month
medians. In the table below the column “ID” reports the position in the NIPA Table 2.4.4U,
the column “share” reports the share of variance explained by the common component, while
the column “weight” reports the weight of each component in the Total PCE index. The
weights are those as of June 2016.

ID Name Label share weight
5 New motor vehicles DNMVRX 4.4 2.1
10 Net purchases of used motor vehicles DNPVRX 0.0 1.0
18 Motor vehicle parts and accessories DMVPRX 0.3 0.5
22 Furniture and furnishings DFFFRX 8.3 1.5
27 Household appliances DAPPRX 2.3 0.4
30 Glassware, tableware, and household utensils DUTERX 4.6 0.4
33 Tools and equipment for house and garden DTOORX 0.0 0.2
37 Video, audio, photographic, and information processing equipment

and media
DVAPRX 13.9 1.8

50 Sporting equipment, supplies, guns, and ammunition DSPGRX 6.2 0.6
51 Sports and recreational vehicles DWHLRX 1.7 0.4
58 Recreational books DRBKRX 5.3 0.3
59 Musical instruments DMSCRX 2.5 0.1
61 Jewelry and watches DJRYRX 2.0 0.6
64 Therapeutic appliances and equipment DTAERX 12.2 0.6
67 Educational books DEBKRX 2.8 0.1
68 Luggage and similar personal items DLUGRX 2.8 0.3
69 Telephone and facsimile equipment DTCERX 20.1 0.1
74 Cereals and bakery products DCBPRX 12.8 1.1
77 Meats and poultry DMAPRX 0.8 1.2
82 Fish and seafood DFISRX 0.9 0.1
83 Milk, dairy products, and eggs DMDERX 1.2 0.6
87 Fats and oils DFATRX 1.9 0.1
88 Fresh fruits and vegetables DFAVRX 0.5 0.7
91 Processed fruits and vegetables DPFVRX 2.7 0.2
92 Sugar and sweets DSWERX 2.4 0.4
93 Food products, not elsewhere classified DOFDRX 6.7 1.1
94 Nonalcoholic beverages purchased for off-premises consumption DNBVRX 1.0 0.7
97 Alcoholic beverages purchased for off-premises consumption DAOPRX 6.9 1.1
101 Food produced and consumed on farms DFFDRX 0.1 0.0
103 Garments DGARRX 3.2 2.4
107 Other clothing materials and footwear DOCCRX 2.3 0.7
112 Motor vehicle fuels, lubricants, and fluids DMFLRX 0.3 2.0
115 Fuel oil and other fuels DFULRX 0.6 0.2
119 Pharmaceutical and other medical products DPHMRX 15.2 3.8
124 Recreational items DREIRX 11.6 1.3
129 Household supplies DHOURX 6.9 1.0
135 Personal care products DOPCRX 2.9 1.0
139 Tobacco DTOBRX 3.0 0.8
140 Magazines, newspapers, and stationery DNEWRX 3.8 0.8

22



ID Name Label share weight
152 Rental of tenant-occupied nonfarm housing DTENRX 30.7 4.0
156 Imputed rental of owner-occupied nonfarm housing DOWNRX 26.1 11.5
159 Rental value of farm dwellings DFARRX 1.4 0.2
160 Group housing DGRHRX 28.8 0.0
163 Water supply and sewage maintenance DWSMRX 1.4 0.6
164 Garbage and trash collection DREFRX 37.2 0.1
166 Electricity DELCRX 1.7 1.4
167 Natural gas DGHERX 0.5 0.4
170 Physician services DPHYRX 30.9 4.0
171 Dental services DDENRX 29.2 1.0
172 Paramedical services DPMSRX 22.5 2.7
179 Hospitals DHSPRX 44.9 8.0
183 Nursing homes DNRSRX 5.5 1.4
187 Motor vehicle services DMVSRX 12.5 2.1
196 Ground transportation DGRDRX 1.5 0.4
203 Air transportation DAITRX 0.4 0.4
204 Water transportation DWATRX 1.2 0.0
206 Membership clubs, sports centers, parks, theaters, and museums DRLSRX 6.5 1.5
214 Audio-video, photographic, and information processing equipment

services
DAVPRX 6.0 0.8

220 Gambling DGAMRX 12.9 1.0
224 Other recreational services DOTRRX 7.3 0.5
231 Meals and nonalcoholic beverages DMABRX 24.2 4.8
239 Alcohol in purchased meals DAPMRX 13.1 0.7
240 Food furnished to employees (including military) DFOORX 2.7 0.2
243 Accommodations DACCRX 1.6 1.0
248 Financial services furnished without payment DIMPRX 5.0 2.6
252 Financial service charges, fees, and commissions DOFIRX 0.5 2.0
265 Life insurance DLIFRX 13.3 0.7
266 Net household insurance DFINRX 0.1 0.1
269 Net health insurance DHINRX 3.9 1.5
273 Net motor vehicle and other transportation insurance DTINRX 0.0 0.5
275 Communication DCORMG 3.3 2.2
285 Higher education DHEDRX 18.8 1.5
288 Nursery, elementary, and secondary schools DNEHRX 23.1 0.3
291 Commercial and vocational schools DVEDRX 0.0 0.4
293 Legal services DGALRX 11.6 0.8
294 Accounting and other business services DPRORX 2.0 0.3
298 Labor organization dues DUNSRX 3.0 0.1
299 Professional association dues DAXSRX 11.6 0.1
300 Funeral and burial services DFUNRX 16.5 0.2
302 Personal care services DPCSRX 12.4 1.1
305 Clothing and footwear services DCFSRX 12.4 0.1
310 Child care DCHCRX 0.9 0.3
311 Social assistance DSCWRX 8.4 0.9
318 Social advocacy and civic and social organizations DSADRX 5.5 0.1
319 Religious organizations’ services to households DRELRX 0.5 0.1
320 Foundations and grantmaking and giving services to households DGIVRX 1.5 0.0
321 Household maintenance DHHMRX 3.1 0.6
339 Final consumption expenditures of NPISH DNPIRX 8.3 2.7
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Appendix A.2 The euro area dataset

The price data for the euro area are monthly price indexes for Harmonized Indexes of Consumer
Prices (HICP) by type of product taken from the Eurostat website http://appsso.eurostat.
ec.europa.eu/nui/show.do?dataset=prc_hicp_midx&lang=en. The data were seasonally
adjusted by using the X-12-ARIMA seasonal adjustment method, and large outliers—πit is
considered an outlier if its absolute value is larger than 10 times the interquantile range—were
replaced by centered 9-month medians. In the table below the column “share” reports the
share of variance explained by the common component, while the column “weight” reports the
weight of each component in the Total HICP index. The weights are those as of 2016.

Name Label share weight
Bread and cereals CP0111 48.1 2.6
Meat CP0112 28.2 3.5
Fish and seafood CP0113 2.6 1.0
Milk, cheese and eggs CP0114 27.4 2.1
Oils and fats CP0115 0.7 0.4
Fruit CP0116 2.7 1.2
Vegetables CP0117 1.4 1.7
Sugar, jam, honey, chocolate and confectionery CP0118 31.5 1.0
Food products n.e.c. CP0119 36.9 0.5
Coffee, tea and cocoa CP0121 3.1 0.4
Mineral waters, soft drinks, fruit and vegetable juices CP0122 29.5 0.9
Spirits CP0211 5.6 0.4
Wine CP0212 9.9 0.8
Beer CP0213 4.5 0.6
Tobacco CP022 2.4 2.4
Clothing materials CP0311 0.2 0.0
Garments CP0312 2.4 4.4
Other articles of clothing and clothing accessories CP0313 0.6 0.3
Cleaning, repair and hire of clothing CP0314 17.6 0.2
Shoes and other footwear CP0321-322 1.9 1.2
Actual rentals paid by tenants CP0411-412 5.0 6.5
Materials for the maintenance and repair of the dwelling CP0431 21.2 0.4
Services for the maintenance and repair of the dwelling CP0432 31.1 0.9
Water supply CP0441 0.0 0.6
Refuse collection CP0442 0.9 0.6
Sewerage collection CP0443 1.1 0.6
Other services relating to the dwelling n.e.c. CP0444 1.4 0.9
Electricity CP0451 7.7 2.7
Gas CP0452 11.9 1.9
Liquid fuels CP0453 0.2 0.6
Solid fuels CP0454 10.2 0.2
Heat energy CP0455 15.0 0.2
Furniture and furnishings CP0511 30.4 1.9
Carpets and other floor coverings CP0512 2.8 0.2
Repair of furniture, furnishings and floor coverings CP0513 12.1 0.1
Household textiles CP0520 5.5 0.4
Major household appliances whether electric or not CP0531-532 5.8 0.9
Repair of household appliances CP0533 10.6 0.1
Glassware, tableware and household utensils CP0540 10.2 0.5
Major tools and equip. and small tools and misc. accessories CP0551-552 20.8 0.5
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Name Label share weight
Non-durable household goods CP0561 35.9 1.0
Domestic services and household services CP0562 8.6 0.9
Pharmaceutical products CP0611 0.0 1.3
Other medical products, therapeutic appliances and equipment CP0612-613 6.0 0.8
Motor cars CP0711 0.3 3.5
Motor cycles, bicycles and animal drawn vehicles CP0712-714 0.1 0.3
Spare parts and accessories for personal transport equipment CP0721 17.9 0.6
Fuels and lubricants for personal transport equipment CP0722 0.3 4.2
Maintenance and repair of personal transport equipment CP0723 42.2 2.5
Other services in respect of personal transport equipment CP0724 12.2 1.2
Passenger transport by railway CP0731 2.2 0.6
Passenger transport by road CP0732 4.0 0.6
Passenger transport by air CP0733 0.6 0.7
Passenger transport by sea and inland waterway CP0734 0.5 0.1
Combined passenger transport CP0735 1.8 0.6
Other purchased transport services CP0736 6.2 0.1
Postal services CP081 4.3 0.2
Telephone and telefax equipment CP0820-830 0.2 3.0
Equipment for the reception, recording and reproduction of sound and
picture

CP0911 5.8 0.4

Photographic and cinematographic equipment and optical instruments CP0912 14.8 0.1
Information processing equipment CP0913 19.4 0.5
Recording media CP0914 0.0 0.2
Repair of audio-visual, photographic and information processing equip-
ment

CP0915 5.3 0.1

Major durables for outdoor recreation and indoor recreation CP0921-922 1.0 0.3
Maintenance and repair of other major durables for recreation and cul-
ture

CP0923 1.4 0.0

Games, toys and hobbies CP0931 1.6 0.6
Equipment for sport, camping and open-air recreation CP0932 2.8 0.3
Gardens, plants and flowers CP0933 0.6 0.6
Pets and related products; veterinary and other services for pets CP0934-935 37.7 0.7
Recreational and sporting services CP0941 6.6 0.9
Cultural services CP0942 6.7 1.4
Books CP0951 0.0 0.5
Newspapers and periodicals CP0952 0.2 0.7
Miscellaneous printed matter;stationery and drawing materials CP0953-954 11.0 0.3
Package holidays CP096 0.1 1.7
Pre-primary, primary, second., etc, and educ. not def. by level CP10X0 7.5 1.1
Restaurants, cafés and the like CP1111 48.2 7.1
Canteens CP1112 6.6 0.7
Accommodation services CP112 0.0 1.8
Hairdressing salons and personal grooming establishments CP1211 25.7 1.2
Electrical appliances for personal care; other appliances, articles and
products for personal care

CP1212-1213 46.5 1.7

Jewellery, clocks and watches CP1231 11.9 0.5
Other personal effects CP1232 5.7 0.5
Insurance connected with the dwelling CP1252 0.5 0.3
Insurance connected with transport CP1254 1.1 0.8
Other financial services n.e.c. CP12622 0.5 0.6
Other services n.e.c. CP127 14.8 1.1
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Appendix B Robustness

In this section we provide robustness checks for the US.
As explained in Section 3.2 there is considerable uncertainty on the number of factors to be

included in the model, and in the first robustness check we show results with a larger number
of factors included. Figure B1 reports results when r = 3 as in Reis and Watson (2010).
In a nutshell: results do change in that, although the sum of the point estimates of common
and idiosyncratic pass-through does not change, the composition between the two components
slightly does. For example, in the model with one factor an unexpected 10% increase in the
real oil price pass-through via the idiosyncratic component increases PCE energy by 11.1%
in the current month, while the (point-estimate) pass-through via the common component is
0.2%. In the model with three factors an unexpected 10% real oil price increase pass-through
via the idiosyncratic component increases PCE energy by 5%, while the pass-through via the
common component is 7%.

Figure B1: Robustness analysis with respect to number of factors
Oil price pass-through into US PCE price inflation

Energy price inflation Core price inflation Food price inflation
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common
component, while the lower plots show the pass-through into idiosyncratic component. On each plot the gray line is the
estimated pass-through in the benchmark model (the shaded area is the 90% confidence band), while the black line is
is the pass-through estimated when r = 3 (the dashed black lines are the 90% confidence bands). The x-axis represents
months, while the y-axis represents percentage points.

The second check is done with respect to the structure of the model. As explained in
Section 2 our model is very similar to a standard FAVAR model (Bernanke et al., 2005).
In our model, the oil price is expected to have not only a common effect on all prices, but
also to possibly have an idiosyncratic effect on energy intensive items. In a FAVAR model,
instead, the oil price is treated as an observed factor, which means that the oil price is part
of the common space only, and it has no effects on the idiosyncratic component. In formulas,
equation (1) is replaced by

πit = λ′ift + γiyt + ξit (B1)

while (2) remains equal and the idiosyncratic component is not modeled. By substituting (2)
into (B1) we can derive the oil price pass-through into the inflation rate of price i implied by
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the FAVAR as:
ψ̃i(L) = λ′ici12(L) + γici22(L). (B2)

Now, in principle ψ̃i(L) should be equal to ψ̃χi (L), and ψ̃ξi (L) should be zero, as in a FAVAR
model the oil price is treated as an observed factor. However, with a clear and acknowledged
abuse of notation, we are going to write ψ̃χi (L) = λici12(L) and ψ̃ξi (L) = γici22(L), and then
by comparing (B2) with (5) we can see that ψ̃χi (L) = ψχi (L), and ψ̃ξi (L) 6= ψξi (L).

Figure B2 compares our benchmark estimated oil price pass-through with the one estimated
using a FAVAR.12 More precisely, the top row of Figure B2 shows the pass-through into
the common component, while the bottom row shows the pass-through into the idiosyncratic
component. As expected, the estimated pass-through into the common component is identical,
while the estimated idiosyncratic pass-through is similar. All in all, the results in Figure B2
show that had we estimated a standard FAVAR rather than the model in Section 2 we would
have reached the same conclusions.

Figure B2: Robustness analysis with respect to model structure
Oil price pass-through into US PCE price inflation

Energy price inflation Core price inflation Food price inflation
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common
component (λ′ici12(L)), while the lower plots show the pass-through into idiosyncratic component (di12(L) for the
benchmark model, and γici22(L) for the FAVAR). On each plot the gray line is the estimated pass-through in the
benchmark model (the shaded area is the 90% confidence band), while the black line is the pass-through estimated
with the FAVAR (the dashed black lines are the 90% confidence bands). The x-axis represents months, while the
y-axis represents percentage points.

12The FAVAR is estimated using PCA and OLS. More specifically, we follow Boivin et al. (2009) and
Aastveit (2014) and we first estimate ft by PCA, call it f̂0t , and then we iterate between (1) estimate λi and
γi by regressing xit into f̂ j−1

t and yt, and (2) estimate f̂ jt by PCA on x̃t = xt − γ̂jyt. Alternatively a FAVAR
could be estimated in one shot either by estimating a restricted DFM with Maximum Likelihood as in Juvenal
and Petrella (2015) and Luciani (2015), or with Bayesian method as in Bernanke et al. (2005).
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